Tutor-USA.com Worksheet

Geometry

Triangle Congruence Proofs - Congruent Right Triangles - HL Theorem

Name: ______
Date: _____

What additional information would you need to prove the triangles congruent by the HL Theorem?

1) $\triangle ABC \cong \triangle XYZ$

2)
$$\triangle ABC \cong \triangle DCB$$

3)
$$\Delta STR \cong \Delta PQN$$

4)
$$\triangle ACT \cong \triangle GCV$$

Write a two Column Proof.

Given: $\overline{WJ} \cong \overline{KX}$, $\angle JWX$ and $\angle XKJ$ are right angles

Prove: $\Delta WJX \cong \Delta KJX$

Tutor-USA.com Worksheet

Given: $\overline{EB} \cong \overline{DB}$, $\angle A$ and $\angle C$ are right angles

6) B is the midpoint of \overline{AC}

Prove: $\triangle BEA \cong \triangle BDC$

Given: $\overline{CD} \cong \overline{EA}$, \overline{AD} is the perpendicular bisector of \overline{CE}

Prove: $\triangle CBD \cong \triangle EBA$

Tutor-USA.com Worksheet

Answer Key

- 1) $\angle C$ and $\angle Z$ are right angles
- 2) $\overline{AC} \cong \overline{BD}$ or $\overline{AB} \cong \overline{CD}$
- 3) $\overline{RT} \cong \overline{NQ}$
- 4) $\angle ATC$ and $\angle GVC$ are right angles

 $\angle JWX$ and $\angle XKL$ are right \angle s Given

 ΔJWX and ΔXKL are right Δs Definition of right Δ

5) $\overline{JX} \cong \overline{JX}$ Reflexive Property

 $\overline{WJ} \cong \overline{KX}$ Given

 $\angle A$ and $\angle C$ are right \angle s Given

 ΔBEA and ΔBDC are right Δs Definition of right Δ

B is the midpoint of \overline{AC} Given

 $\overline{AB} \cong \overline{CB}$ Definition of Midpoint

 $\overline{EB} \cong \overline{DB}$ Given

 \overline{AD} is the \perp of \overline{CE} Given

 $\angle CBD$ and $\angle EBA$ are right \angle s Definition of \bot lines

B is the midpoint of \overline{CE} Definition of bisector

7) $\triangle CBD$ and $\triangle EBA$ are right $\triangle s$ Definition of right $\triangle t$

 $\overline{CB} \cong \overline{EB}$ Definition of Midpoint

 $\overline{CD} \cong \overline{EA}$ Given