www.TUTOR-USR.com worksheet

Algebra Slope Name: _____ Period: _____

The ______ of a line is its rate of change.

$$Sope = \frac{Change in y(\Delta y)}{Change in x(\Delta x)} = \frac{rise}{run}$$

Examples: Find the slope of a line using a graph.

A line that slants upward from left to right has a ______ slope.

A line that slants downward from left to right has a ______ slope.

www.TUTOR-USA.com worksheet

You try: Find the slope of each line using rise over run.

Slope = _____

Slope = _____

www.**TUTOR-USA**.com

Slope of Horizontal and Vertical Lines

Find the slope of each line.

Rise = _____ Run = _____

Slope = _____

Rise = Run =

Slope = _____

Calculating Slope using Points

We can calculate the slope of a line if we know two points that lie on the line.

 $Sope = \frac{Change in y(\Delta y)}{Change in x(\Delta x)}$

Examples: Find the slope of the line that passes through the following points.

1. (5, 6), (3, 2) 2. (4, 8), (8, 11)

2. (-7, 1), (7, 8) 4. (5, 8), (5, 2)

5. (2, 3), (-6, 3)